
Application of Genetic Algorithms to Molecular Biology:

Locating Putative Protein Signal Sequences

Michael Levin

Genetics dept.

Harvard Medical School

200 Longwood Ave.,

Boston, MA 02115

(617) 432-7758

mlevin@husc.harvard.edu

Summary

 This paper presents an application of genetic algorithms to a problem in mo-
lecular biology. Many proteins occurring in cells participate in biochemical events
such as degradation, chemical modification, directional transport, etc. It has been
shown that in certain cases, a string of amino-acids serves as a specific signal;
thus proteins which carry this sequence within their primary structures participate
in some molecular event, while proteins lacking this sequence do not (the
endoplasmic reticulum retention signal "KDEL" is a good example). Finding the
sequence of a specific possible signal based only on the primary structures of a
group of proteins thought to carry it is a very difficult task. No good algorithm
currently exists for locating brand new signals. A genetic algorithm is described
here which is able to discover such sequences. This algorithm is able to search the
enormous state space of all possible signals in reasonable time, and locate likely
signal sequences (which can then be tested empirically). The algorithm can also
be used to find signature sequences in related proteins. Since genetic algorithms
are domain-independent, a parametrization study is also presented, which shows
optimal values of certain constants for this specific task.

Locating Protein Signals by GAs

-1-

Introduction

 Many proteins important in cell function participate in various processes (re-
tention in or targeting to specific organelles, chemical modification, degradation,
secretion, etc.). In certain cases, the signal which determines exactly which pro-
teins participate in a given process is a short string of amino acids within the pri-
mary structure of the proteins. The endoplasmic retention signal, K-D-E-L, is a
good example of this (Pelham, 1990).

 So many examples of signals have been found (Bairoch, 1991) that when one
has several proteins (called the "in" group), all of which undergo some particular
event, it becomes tempting to search for a sequence which might serve as the rec-
ognition signal. Once a potential sequence has been found (one that occurs in, and
only in, that group of proteins), the hypothesis can be tested by artificially graft-
ing the signal onto a protein which doesn’t normally participate in the event. If the
chimeric protein is seen to then undergo the event, the hypothesis is confirmed.

 One problem with this process is that given the primary structures of several
proteins, it is a very difficult task to come up with a potential signal sequence; if
the proteins are of significant length, it is very hard to identify a common (but
unique to the group) region by eye, especially since certain amino-acid homology
rules and groupings may apply. If one has a pretty good idea what this signal
might be, simple pattern matching, weight matrix analysis, or discriminant analy-
sis can be used. However, there are no good methods for easily finding a com-
pletely new signal.

 This problem reduces to the task of finding the longest string which matches
optimally somewhere within all members of the functionally-defined "in" group,
and does not match a random set of proteins not belonging to the group (the "out"
group). A closely related problem is to find a signature sequence which can be
used to tell certain proteins apart from similar ones (such as the "A-G-L-x-F-P-V"
signature for histone H2B, Wells, 1989). This task thus touches on features of ma-
chine learning, pattern recognition, classification systems, and feature abstraction.

 Considering the fact that the data is noisy (i.e., one or more of the "in" group
proteins may not carry the signal, but participate in the event of interest for other
reasons), and the fact that the signal sequence may not be 100% conserved among
all proteins, the search space of all possible signals of a given length (usually 3-10
amino-acids long) is a very difficult one. If a very fast computer is available, and
one is willing to restrict the search to signals less than about six amino-acids long,
an exhaustive search of all possible short strings may be feasible. However, as the

Locating Protein Signals by GAs

-2-

length of the proteins involved grows, and one wants to look at signals which may
be somewhat longer, this quickly becomes impractical with respect to the time in-
volved to perform the search (the time required is proportional to 30N where N is
the maximum number of characters in the signal).

 A set of algorithms which has recently been shown to be able to find solutions
in difficult search spaces is known as "genetic algorithms" (Goldberg, 1989,
Davis, 1991, Holland, 1992, Koza, 1992). These domain-independent algorithms
simulate evolution by retaining the best of a population of potential solutions, and
mutating these to arrive at the next generation’s population. This process is re-
peated until a solution of sufficient quality is found (or computational resources
are exhausted). The algorithms have proven to be robust and effective for a wide
variety of problems, such as symbolic regression, process control, generation of
emergent behavior, classification, and pattern recognition (see Koza, 1992 and
references therein). GAs have also been used in molecular biology (Dandekar,
1992).

 This approach can be used to locate likely candidates for functional protein
signals (De La Maza and Tidor, 1992, used a very similar problem to study the
effects of Boltzman selective pressure). This is done by performing random muta-
tion and fitness selection over a population of candidate signal sequences. Each
individual in this population is a string of amino-acids of some length. Its fitness
is proportional to how well this sequence matches the members of the "in" group,
and inversely proportional to its match with the "out" group. Genetic algorithms
are used, rather than the more general technique of genetic programming because
in this case the map from discrete character set genome to the possible solution
space is a very natural one. This algorithm is shown to effectively and easily lo-
cate potential signal sequences with no initial data other than the functional
grouping of proteins and their primary structure. Since the genetic algorithm ap-
proach is domain-independent, a parametrization study is performed, to determine
the optimal parameters for locating such sequences.

Implementation

 The algorithm is fairly simple, and is easily coded in C. Each member of the
population is a string (called a "schema") of some length (minimum length is usu-
ally set to 3, maximum length to 10) over the alphabet consisting of the single let-
ter codes for amino-acids, plus the symbols * (the wildcard, or "any amino acid"
symbol), a ("an acidic amino acid"), b ("a basic amino acid"), n ("a neutral amino
acid"), h ("a hydrophobic amino acid"), p ("a polar amino acid"), and c ("a
charged amino acid"). This string can be directly compared to any protein’s pri-

Locating Protein Signals by GAs

-3-

mary structure. Thus for example, the hypothetical string "TY*Sa" would match a
protein which contained a threonine, followed by a tyrosine, followed by any
amino acid, followed by a serine, followed by any acidic amino acid. Additional
symbols can be added (such as the numbers 0 through 9) which can stand for cer-
tain other homologies (for example, 0 may stand for "either S or A here"). The
string is the member’s genetic material - one chromosome.

 Several operators are used. Firstly, a fitness function has to be defined, which
can evaluate the worth (i.e., success at differentiating the "in" proteins from the
"out" proteins) of any individual. This is returned as a scalar floating point num-
ber, which allows unambiguous ordered ranking of all individuals. This number is
based on parameters designed to take into account several desirable qualities of a
candidate solution; higher numbers indicate better schemata. The fitness function
used in this implementation, when applied to a schema S, returns a number which
is equal to:

k1·knowledge(S) + k2·size(S) - k3·vagueness(S) (1)

where knowledge(S) is equal to:

 match_ins(S) - k4·match_outs(S) (2)

match_ins(S) determines how well schema S matches the proteins in the "in"
group. match_outs(S) does the same for the "outs" group. The degree of match is
computed as the sum of all matches to proteins in a group, divided by the number
of members in the group. The degree of match to a given protein is defined as the
number of matching characters (at the best-matching position within the protein)
divided by the length of the schema. The match to the "out" group is subtracted, to
ensure that the best individuals are those which match the "out" group least.

size(S) determines the effects of the schema size. In general, the value of size(S)
should be proportional to the length of the schema, because it is better to have the
complete signal sequence than a part of it. It may however include special
nonlinear terms to punish schemata that are too long.

vagueness(S) determines how specific the schema is. It is proportional to the
number of non-specific symbols occurring in S (such as * etc.). This term is also
subtracted in equation 1 because it is best to have as specific a sequence as possi-
ble (while still matching optimally).

 The constants k1 through k4 are parameters than the user can adjust for specific
effects. Normally k1 » k2, k3 because the most important thing is for the schema to

Locating Protein Signals by GAs

-4-

differentiate between the "in" group and the "out" group. However, the other
terms ensure that if two individuals have similar matching ability, the more spe-
cific and longer ones will be considered more fit. The constant k4 can be changed
to control how specific the signal is to the "in" group. It is usually less than 1.0
because even a signal that occurs somewhat in non-belonging proteins can be use-
ful if it always occurs in belonging ones.

 Once the most fit members of a population are identified, their genotypes are
used to construct the next generation. Two possible operators are mutation, and
cross-over. A single mutation event performed on a schema S (asexual reproduc-
tion), as used in this algorithm, consists of choosing at random among: deleting a
symbol at a random position within S, adding a random symbol somewhere
within S, or changing a random symbol within S to some other random symbol.
Appropriate safeguards are used to ensure that schemata don’t become too small
or too large. Other than that, the mutation is completely random, with no foresight
as to the effects on its performance. Cross-over consists of picking two individu-
als, and producing two new ones by swapping random parts of the parents’
genome.

 Cross-over was used in the initial trials of these experiments, but resulted in
premature convergence of the population on sub-optimal solutions (data not
shown). This can be ameliorated by biasing cross-over to avoid mating between
similar individuals. This kind of artificial "incest taboo" seems to prevent some of
the problems inherent in pure cross-over, but it is unclear as to whether it is better
than no cross-over at all. All results shown in this paper utilize simple mutation
only. These results are consistent with those of Fogel and Atmar, 1990, who con-
clude that complex genetic operators such as cross-over and regional inversion do
not compare favorably with simple mutation (unlike Holland, 1975 and Koza,
1992, who claim that cross-over produces better results than mutation).

 The control flow of the algorithm is shown in Fig. 1. After the parameters are
set, the "in" and "out" groups are read in from disk. The "out" group should ide-
ally consist of proteins which are related to the proteins in the "in" group, but
known (from empirical evidence) not to participate in whatever event functionally
defines the "in" group. Alternatively, the "out" group can consist of randomly-
chosen proteins, or even of random sequences of amino-acid symbols.

 An initial random population is then created. The population size is the pa-
rameter P1 - this is what determines how many solutions the algorithm is working
with at any time. The bigger the value of P1, the longer it takes to evaluate each
generation; however, higher values of P1 make it more likely that a good solution

Locating Protein Signals by GAs

-5-

will be found. Typical values of P1 can be from 300 to 1000. The user can, at this
point, seed the initial population with several initial guesses. This can be used to
improve a guess obtained by other means, or to help speed up the search when
some of the signal is known, but it is not a good practice in general because it can
cause the search to prematurely converge on some solution and ignore one which
may turn out to be better.

 Then, each individual is evaluated according to the fitness function, and the
top P2 schemas are chosen. P2 is usually between 10% and 70% of P1. Too high a
value of P2 results in slow convergence, while too low a value may cause prema-
ture convergence due to early elimination of potentially good schemata. It is im-
portant to note that evaluating the fitness of a given individual is the most
computation-intensive step in this algorithm. As the population homogeneity be-
gins to rise, a simple trick can be used to cut down the evaluation time (which can
be critical, when the "in" group is large). This method takes advantage of the fact
that if more than one schema in the population have identical sequences, only one
has to be evaluated, and its fitness can be assigned to all of them. Thus, previous
to evaluating fitnesses, the population is sorted by alphabetical order. For each
schema Sn (n>1) if it is identical to Sn-1, then the fitness assigned to Sn is simply
copied from Sn-1; otherwise, the fitness of Sn is calculated explicitly.

 The population is then rebuilt, to consist of mutated copies of the best indi-
viduals, as well as unchanged versions of these individuals. This is "elitist" selec-
tion, and ensures that good schemas are never lost from the population. This proc-
ess continues until either an acceptable solution is found, or the time limit expires.
This process can contain several additional features. For example, if the popula-
tion homogeneity becomes too high, some copies of the most frequent individuals
can be replaced with random schemas, or mutated heavily in an attempt to inject
variety into the system (the elitist selection ensures that this cannot decrease the
maximum fitness found in the population). The whole algorithm is summarized
by the following pseudocode:

Locating Protein Signals by GAs

-6-

1. Read initial data - in and out groups, parameters N, P, Q, R, S, etc. Place protein
sequences in two-dimensional string arrays.

2. Build up a random population of schemas, or read them in from a file. Place sequences
into two-dimensional string array. Cross-over and mutation are accomplished as
string operations (i.e., character and substring substitutions, deletions,
inversions, etc.) on the members of these arrays.

3. Until top fitness is acceptable, or allotted time has expired, do:

 A. Compute fitness for each member of the population, by matching its sequence to each
member of the in and out groups. Fitness is calculated as in eq. 1 above, using
simple string matching.

 B. Sort the population. Leave the top N members unchanged. Set the next P members to
strings which arise from cross-overs between randomly-chosen members of the
N best. The choice is biased to favor cross-overs between dissimilar schemata.

 C. Introduce Q mutations into the members resulting from cross-over, and set the
remainder of the population to consist of mutated versions of the top N
members.

 D. Compute and plot the top fitness, average fitness, and homogeneity of population as a
function of generation number.

 E. Compute total homogeneity of population. If this is higher than an acceptable level R,
then eliminate all but one copy of each individual, and fill in the rest of the
population with crossovers between the remaining individuals and random
schemata.

4. Print out the top S non-identical schemata, their fitnesses, and their locations within
each member of the in group.

 In this algorithm, the computational complexity (as measured in the number of
string comparisons per generation) as a function of total protein lengths is O(n).
That is, it increases only linearly with increases in the number of total amino acids
in the in and out groups. However, the total time spent on the search is not neces-
sarily O(n) because different numbers of total generations are required to find
adequate solutions for different sets of proteins, and because of the stochastic na-
ture of the algorithm.

Results of Sample Applications

Locating Protein Signals by GAs

-7-

 This algorithm was tested on many different kinds of signals (data not shown).
Two examples are illustrated here in detail. Figures 2 and 3 show the progress of
the search over time (in generations on the abscissa). Three quantities (explained
below) are monitored; their magnitude is normalized between 0 and 1 (on the or-
dinate).

 The first sample application illustrates how the algorithm finds the KDEL sig-
nal given the sequences of the following proteins found in the GenEMBL data-
base): H. vulgare GRP94 homologue, rat immunoglobulin heavy chain binding
protein (BiP), rat calreticulin, and rat protein disulfide isomerase (accession num-
bers X67960, M14050, X53363, X02918 respectively). For this run, the parame-
ters are set as shown in column 1 of Table 1. The results of the run are seen in
Fig. 2. The KDEL sequence is found in 64 generations, which represents about
2.5 hours of real time on a lightly loaded (average system load during run = 1.05)
DecStation 5000 workstation. Interestingly (perhaps), it initially found other se-
quences common to these proteins (with 100% fit to each): "EED" and "EEEa".
Once a schema has been found, and determined (empirically) not to be of interest,
others can be searched for by entering this sequence into the "out" group (to en-
sure that the search disregards it).

 The second sample application illustrates how this method can be used to find
signature sequences. In this case, the histone H2A signature A-G-L-x-F-P-V
(Wells, 1989) can be found by running H2A variants in the "in" group and the
H2B, H3, and H4 proteins in the "out" group. In this experiment, the "in" group
consisted of sea urchin (P. miliaris) late histone H2A-2, human histone H2A gene
(lambda-HHG55), P. miliaris histone H2A-2.1 gene, and the murine H2A gene
(accession numbers M11085, K01889, M14140, X16495 respectively). The "out"
group consisted of sea urchin (P. miliaris) late histone H2B-2, P. miliaris histone
H2B-2.2 gene, P. miliaris gene for histone H3, chicken histone H3 gene, A. thali-
ana histone H3 gene, X. laevis histone H4-1 gene, and the newt histone H4 gene
(accession numbers M11088, M14143, V01140, J00869, M35387, M23776,
M23777, J00954 respectively). For this, the specificity constant needs to be
higher than usual. The constants in this experiment are given in column 2 of Table
1. Figure 3 shows that the H2A signature is found at generation 206. Interest-
ingly, another one is found, which is considered by the algorithm to be even better
(because it doesn’t contain any non-specific characters): LQFPVGR at generation
84.

 Several interesting things can be noted from these sample runs. The solid line
shows the fitness of the best individual at each generation. This curve is
monotonic, since the elitist selection ensures the best individuals are never lost.

Locating Protein Signals by GAs

-8-

In these and some other runs (data not shown) the maximum fitness curve is remi-
niscent of the punctuated equilibrium hypothesis (Eldredge, 1985) - long stretches
of little change interrupted by sharp improvements. This may be due to the fact
that the mutation rate used here is too low to cause changes in top fitness over
small time periods.

 The maximum fitness of the second plot starts out much lower than that of plot
2, since the target string of experiment 2 is more complex, and the average fitness
of a random individual is likely to be lower. The dashed line representing the av-
erage length of all schemata drops quickly to the optimal length. This is somewhat
surprising since the length constant in the fitness function is low, and it might be
expected that the length not be important (and thus not be selected for) until the
fitness becomes quite high and the population converges. The dotted line repre-
sents the population homogeneity (as computed by taking the sum of the average
similarities of each individual to all others in the population). Interestingly, it is
non-monotonic and complex; this is an emergent phenomenon - there is nothing
in the fitness function to directly cause such a curve. Note that these curves are
very different between Figures 2 and 3, suggesting that the large-scale population
dynamics are different for different instances of this search problem.

Parametrization study

 With so many variables in this domain-independent algorithm, it becomes in-
teresting to 1) determine what combination of settings are optimal for the protein
signal problem, and 2) examine the properties of the algorithm as they vary with
the parameters. For these purposes, a parametrization study was performed. In all
of these studies, the dependent variable was the generation number in which the
desired answer first appeared ("generation of discovery"). The problem set in all
cases was to locate the KDEL sequence (using half-lengths of the proteins given
above). All parameters except the one being changed are set to the values in col-
umn 3 of Table 1. A study of variation (since the algorithm is a non-deterministic
one) was performed; 20 repetitions of exactly the same problem and parameters
showed that differences in generation of discovery were of the range ±13 (data
not shown). This is to be considered as the significant difference level for the ex-
periments described below. In all of the figures, the value shown is the average of
10 repeat runs.

 The first part of this study examined the dependence of the algorithm’s effi-
ciency in finding the KDEL sequence on the size of the population used. A popu-
lation size of 400 found the solution in 41 generations, while a population size of
1400 found the solution in only 17 generations. Intermediate values of population

Locating Protein Signals by GAs

-9-

size produced intermediate values of generation of discovery. Populations of sizes
300 and smaller did not tend to locate the solution at all (within 2000 genera-
tions). Figure 4 summarizes the dependence of generation of discovery on the size
of the population. Clearly it is better to use larger generation sizes. However,
since larger generation sizes also take longer to evaluate, it is interesting to exam-
ine how the time of discovery relates to the generation size. It is important to note
that these times are relative (because they depend on what kind of computer the
tests are run on).

 A population of size 400 found the solution in 58 minutes, while a population
of size 1400 found it in 80 minutes. Intermediate population sizes produced inter-
mediate results. Figure 5 summarizes this data, showing a U-shaped relationship.
For small generation sizes, it takes longer to find the solution because of the large
number of generations necessary. For large population sizes, it also takes longer,
because of the computational cost of evaluating large populations. The optimal
value seems to be about 800, which allows the solution to be found in just 31 min-
utes.

 The second part of this study examined the role of the number of survivors at
each generation. Since this value in itself does not alter the computation time,
only generation of discovery (not absolute time of discovery) was studied. When
20% of the best individuals are allowed to reproduce at each generation, the solu-
tion can be found in 20 generations. When 90% are allowed, the average is 320
generations. Reproduction values of less than 20% tended not to find the solution
at all. Too few reproducers lead to premature convergence on local maxima, while
too many lead to very slow convergence to the global maximum. Figure 6 sum-
marizes this data, and shows that the optimal tradeoff seems to occur at a survival
size of about 20%.

 The final part of this study looked at the role of mutation. In these experi-
ments, the same problem as above was examined, with varying numbers of muta-
tions in each offspring. Figure 7 summarizes the data, which shows that when
each offspring is subject to between 1 and 256 mutations, the solution is found on
average at the same generation number (around 35). The differences between
these values are not significant, showing (surprisingly) that the algorithm’s effi-
ciency is tolerant to a wide range of mutation incidences.

Future directions

 There are several ways in which this algorithm could be improved. Firstly, it
would easily lend itself to paralellization on a computer such as the Connection

Locating Protein Signals by GAs

-10-

Machine. Immense savings in time would be accomplished by running the fitness
evaluations of each individual in parallel. The algorithm could also be made to
deal better with noise in the experimental data by choosing to disregard a member
of the "in" group if a schema is found which matches all the other members very
well, but does not match it. Other varieties of genetic algorithms (steady-state
populations, demes, etc.) may also produce better results.

Acknowledgments

 I would like to acknowledge several helpful discussions with David Fogel.

Locating Protein Signals by GAs

-11-

Figure Captions

Figure 1: flow of control for genetic algorithm

Figure 2: locating the KDEL sequence

A genetic algorithm search was performed with the parameters given in
column 1 of Table 1. The solid line represents the fitness of the most fit schema at
any generation. The dashed line represents the average length of the schemata at a
given generation. The dotted line represents the homogeneity of the population.

Figure 3: locating the histone H2A signature sequence

A genetic algorithm search was performed with the parameters given in
column 1 of Table 1. The solid line represents the fitness of the most fit schema at
any generation. The dashed line represents the average length of the schemata at a
given generation. The dotted line represents the homogeneity of the population.

Figure 4: dependence of generation of discovery on population size

A series of genetic search algorithms was performed on the KDEL
problem, each using a different population size (given on the X axis). The other
parameters are set as in the 3rd column of Table 1. The generation number at
which the KDEL sequence was found is plotted on the Y axis.

Figure 5: dependence of raw time to discovery on population size

A series of genetic search algorithms was performed on the KDEL
problem, each using a different population size (given on the X axis). The other
parameters are set as in the 3rd column of Table 1. The time (in minutes) at which
the KDEL sequence was found (relative to start time) is plotted on the Y axis.

Figure 6: dependence of generation of discovery on survival size

A series of genetic search algorithms was performed on the KDEL
problem, each allowing a different percentage of the top individuals to contribute
genetic material to the next generation (given on the X axis). The other parame-
ters are set as in the 3rd column of Table 1. The generation number at which the
KDEL sequence was found is plotted on the Y axis.

Figure 7: dependence of generation of discovery on mutation incidence

Locating Protein Signals by GAs

-12-

A series of genetic search algorithms was performed on the KDEL
problem, each allowing a different number of mutation events to occur when a top
individual contributes genetic material to the next generation (given on the X
axis). The other parameters are set as in the 3rd column of Table 1. The genera-
tion number at which the KDEL sequence was found is plotted on the Y axis.

Locating Protein Signals by GAs

-13-

References

Bairoch A., (1991), PROSITE: a dictionary of sites and patterns in proteins,
Nucleic Acids Res., 19: 2241-2245

Dandekar, T., (1992), Potential of genetic algorithms in protein folding, Protein
Engineering, 5(7): 637-645

Davis, Lawrence, Handbook of Genetic Algorithms, Van Nostrand Reinhold, NY:
1991

De La Maza, Michael, Bruce Tidor, (1992), Increased flexibility in genetic
algorithms, in Proceedings of the ORCA CSTS Conference: Computer
Science and Operations Research: New Developments in Their
Interfaces, pp. 425-440

Eldredge, Niles, Time Frames, Simon and Schuster, New York: 1985

Fogel, D. B., (1990), Comparing genetic operators with Gaussian mutations in
simulated evolutionary processes using linear systems, Biological
Cybernetics, 63: 111-114

Goldberg, David E., Genetic Algorithms in Search, Optimization, and Machine
Learning", Addison-Wesley, MA: 1989

Holland, John H., Adaptation in Natural and Artificial Systems, Univ. of
Michigan Pr., Ann Arbor: 1975

Holland, John H., Adaptation in Natural and Artificial Systems, MIT Press, MA:
1992

Koza, John R., Genetic Programming, MIT Press, MA: 1992

Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag, NY: 1992

Pelham, H.R.B., (1990), The retention signal for soluble proteins of the
endoplasmic reticulum, Trends Biochem. Sci. 15: 483-486

Wells D.E., McBride C., (1989), A comprehensive compilation and alignment of
histones and histone genes, Nucleic Acids Res. 17: r311-r346

Locating Protein Signals by GAs

-14-

Initialization: set parameters, load "in" and
"out" sequences, load population seeds if
any, create random population.

Evaluate each member of the population; sort the
members by fitness, and retain only the top ones.
Collect statistical data on the population.

Fill in population with the
best sequences, and mu-
tants of the best ones.

If the population is too homogeneous, replace
very common schemas with random ones.

Acceptable
schema found?

Print out the top ones
with their fitnesses,
and quit.

Yes

No

Figure 1: the genetic algorithm flow of control

Locating Protein Signals by GAs

-15-

Figure 2: locating the KDEL sequence

KDEL found at generation 64

Locating Protein Signals by GAs

-16-

Figure 3: locating the histone H2A signature sequence

AGL*FPV found at generation 206

Locating Protein Signals by GAs

-17-

Figure 4: dependence of solution rate on population size

50

10

15

20

25

30

35

40

45

1500
200

400
600

800
1000

1200
1400

Population size

Locating Protein Signals by GAs

-18-

Figure 5: dependence of time to discovery on population size

90

20

30

40

50

60

70

80

1500
200

400
600

800
1000

1200
1400

Population size

Locating Protein Signals by GAs

-19-

340

0

50

100

150

200

250

300

1000 10 20 30 40 50 60 70 80 90

Figure 6: dependence of generation of discovery on survival size

% of population taken for next generation

Locating Protein Signals by GAs

-20-

Figure 7: dependence of generation of discovery on mutation incidence

100

0

20

40

60

80

1 2 5 10 20 50 100 200 500 1000

No. of mutations performed on each survivor

(Log scale)

Locating Protein Signals by GAs

-21-

Table 1: parameter settings for various runs

Parameter KDEL Histone signature Default

Population size (P1) 800 800 800

survival size (P2) 300 300 30%

K1 15 15 15

K2 2 2 2

K3 3 3 3

K4 0.1 0.8 0.1

 Aug. 28, 1993

Michael Levin

43 Worcester Ave.

Swampscott, MA

 01907

(617) 599-3231

mlevin@husc8.harvard.edu

Cell and Developmental Biology Dept.

Harvard Medical School

Boston, MA

Dear Professor Kauffman,

 Enclosed please find a manuscript which I would like to submit for considera-
tion of the Journal of Theoretical Biology. The paper describes a successful appli-
cation of genetic algorithms to a problem in molecular biology. I believe this
work to be important both to the molecular biology community as well as to those
interested in genetic algorithms. It presents a tool for solving a problem for which
no good algorithm currently exists, determines the optimal parameters for this al-
gorithm, and shows yet another problem area in which genetic algorithms can be
successfully applied. I thank you for your consideration, and hope to hear from
you soon.

Sincerely,

Michael Levin

